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FINITE AMPLITUDE WAVES IN FLUID FILLED RUBBER 

TUBES OF CIRCULAR CROSS SECTION 

Richard M. Beam 

Ames Research Center, NASA 

Moffett Field, Calif. 94035 

Abstract 

The dynamics of a fluid filled rubber tube of circular cross section a re  

investigated using the Lagrangian plan of coordinates. The analysis is based on 

a one dimensional laminar flow model and includes large deformations. The 

adequacy of a one-dimensional model for studying blood flow in arteries has 

been experimentally and analytically investigated by Olsen and Shapiro who used 

the Eulerian plan of coordinates in their analysis. 

The present investigation shows that the Lagrangian coordinates reduce the 

mathematical problem to the solution of the linear wave equation. This reduction 

i s  unique to the rubber tube with circular cross section. Therefore, the conclu- 

sions based on experiments and theory with rubber tubes of circular cross 

section should be carefully examined before they are applied to other elastic 

tubes or  to arteries and veins. It is suggested that the experimental investigation 

of wave distortion (nonlinear wave equation) be investigated by using partially 

collapsed rubber tubes. 
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1. Introduction 

The mathematical analysis of blood flow has generated many analyses of the 

dynamics of fluid filled elastic tubes.l* Although the majority of papers on the 

subject have been published within the last two decades, the problem was con- 

sidered as early as  1882 by Leonhard Euler. The analytical treatment has been 

primarily based on small amplitude linear theories. Several authors have con- 

sidered the non-linear terms by perturbation methods or by direct numerical 

integration of the characteristics .2-7 Only recently have Olsen and Shapiro8 

(1967) attempted to establish a large amplitude theory which could be verified 

by experiments (on a simulated artery) in which the physical parameters could 

be accurately measured and controlled. 

The analytical work of Olsen and Shapiro is based on a one dimensional flow 

model fo r  a viscous incompressible liquid in a long elastic tube. In addition, it 

is assumed that (i) the wavelength is long compared with the tube diameter (i.e., 

the axial bending rigidity of the tube can be neglected), (ii) the tube is constrained 

from longitudinal motions, and (iii) the tube material follows the stress-strain 

law given hy the kinetic theory for rubber. Two solutions were presented for the 

equations of motion. The first was a perturbation solution including second order 

terms, and the second solution was a direct numerical integration of the charac- 

teristics. In their experimental work, they considered standing waves in water 

filled rubber tubes. The agreement of the analytical model with laminar flow and 

the experiments was shown to be good over the physiological range of parameters. 

* Superscri3s in text denote references. 
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The choice of rubber tubing for the simulation of arteries is  quite logical 

since it is an elastic material which can withstand large strains. However, the 

unique pressure area relation of an axially constrained rubber tube of circular 

cross section (the model of Olsen and Shapiro) leads to conclusions regarding 

wave distortion which will not apply to a more general pressure area relation. 

The purpose of this report is to show that the mathematical model for the 

Olsen-Shapiro problem can be obtained as  a linear equation if the Lagrangian 

rather than the Eulerian coordinate system is used to formulate the problem. 

This not only enables one to obtain a closed form solution for the problem but 

shows immediately that the distortion of traveling waves i s  due only to the viscous 

forces and, accordingly, if viscous forces are  small there will be sqa l l  amounts 

of wave distortion. Conversely, if the pressure area relation for the tube is 

different from that of a rubber tube the wave distortion will occur in addition 

from other than viscous sources. 

The results of this report do not prohibit the experimental study of non- 

linearities of the fluid flow (i.e., turbulence) which occur when the rubber tube 

has circular cross section. If the tube is of noncircular cross section (i.e., 

partially collapsed) then the effect of wave distortion due to the tube pressure 

area relation may be considered. This later problem has been considered by the 

author9 in the study of the distortion of simple (nonreflecting) traveling waves. 
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2. Symbols 

the internal cross sectional area of tube 

constants defined by equation (21) 

wave velocity 

pressure area relation for tube 

elastic constant for rubber 

function defined by equation (21) 

tube wall thickness 

length of tube 

function defined by equation (21) 

constant defined by equation (11) 

pressure inside tube 

fow rate entering tube 

tube internal radius 

time 

fluid particle displacement 

function defined by equation (19) 

constant defined by equation (18) 

spatial coordinate 

constant defined by equation (12) 

constants defined by equation (22) 

constant defined by equation (11) 

constants defined by equation (15) and (16) 
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v kinematic viscosity of fluid 

I P fluid density 

7 

w frequency of oscillatory flow 

Subscripts 

wall shear force per unit length due to fluid viscosity 

n 

e 

state of no pressure difference across tube wall 

state of equilibrium with pressure difference across tube wall 

3. Analysis 

(a) Lagrangian Equations of Motion 

Consider the equilibrium of an element of fluid which had original length 6x 

(figure 1). Let u(x,t) be the displacement of the particle which had coordinate x 

at time t=O. In addition, define 

A, 

A(x,t) - the cross sectional area of the fluid element which had coordinate x at 

- the original cross sectional area of the fluid element 

t = O  (i.e., the cross sectional area of the element at x + u). 

p(x,t) - the pressure in the fluid element which had coordinate x at t ~ 0  (i.e., the 

pressure in the element at x + u). 

P - fluid density (a constant fo r  incompressible fluid) 

7 - the wall shear force per unit length of tube. 

The forces acting on the element surfaces are the pressure force 

- Abx 

and the shear force from the tube wall 
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These surface forces must balance the inertia force 

The equilibrium equation is 

that 

ax 

The conservation of mass (or volume for an incompressible fluA) requires 

Ae =(l+ 2 ) A  

If the pressure area curve of the tube is given by 

P = f(A) 

then 

& df(A1 aA aA - - = f’(A)- ax dA ax ax 

(3) 

Note that from differentiation of equation (2) with respect to x one obtains 

Substituting from equations (4) and (5)  into equation (1) leads to 

Equations (2) and (6) are the Lagrangian form of the equations of motion for u 

and A. These equations are equivalent to the Eulerian equations presented by 
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Olsen and Shapiro. The mathematical model applicability to physical problems 

I which was demonstrated by their experiments is therefore, appropriate for 

equations (2) and (6). 

For most pressure area curves and shear force relations, equations (2) and 

(6) lead to a nonlinear system of equations. Closed form solutions for these 

general equations a re  not available, however for  simple (nonreflecting) waves 

and invisicid flow ( T = 0) the solutions have been obtained by the author ,g 

(b) Rubber Tube Pressure Area Relation 

The pressure area relation for a rubber tube of circular cross section is8 

f(A) = (3% 1 - (2)21 
Rn 

L 4 
where the quantities a re  defined 

G - elastic constant which is a property of the rubber 

h - tube wall thickness 

R - tube internal radius 

and the subscripts 

n - the state of no differential pressure across the tube wall  

e - the state of equilibrium at the time analysis begins (t=O) 

Optionally, equation (7) may be written 

f e 

where 
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or fe  i s  the equilibrium pres sure 

f '  (A) 

when the analysis 

- 
A3 

begins. Note that 

(c) Wall  Shear Force for Laminar Flow 

The approximation for  wall shear force is that resulting from a purely 

sinusoidal laminar flow in a rigid tube Q = Qoeiwt, where Q is the flow and w is 

the frequency of oscillation. With the assumption that the elastic tube condition 

can be approximated in a quasi-dynamic fashion by the rigid tube theory (the 

assumption of Olsen and Shapiro which was shown to be valid experimentally) 

the shear force becomes2 

and 

T = - iwp A I 1  - M I O e  -1 - iqo } %  & 

M10 and €10 are  constants defined by 

where v is the kinematic viscosity and J is the Bessel function of the first kind. 

Tables of M10 and €10 are  given by Womersley.2 

(d) Olsen-Shapiro Problem in Lagrangian Coordinates 

The Lagrangian form of the problem considered by Olsen and Shapiro is  

obtained by introducing the pressure area relation for a rubber tube (equation 
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(10)) and the wall shear force for laminar flow (equation (11)) into the general 

equation of motion (equation (6) ). One obtains 

where 

sin 
5, = 

M10 

cos E10 

M10 c2 - - 

Several important conclusions can be drawn from the somewhat astonishing 

result that the Lagrangian form of the equation of motion (equation (14) ) is  linear 

for  large as well as small deformations. 

If the viscosity is zero gi there will be no wave distortion. 

This is a unique feature of the rubber tube (with circular cross section) 

pressure area relation. 

For viscous laminar flow the equation of motion is still linear and the 

wave distortion is due to viscous effects (i.e., small wave distortion for 

small viscosities). This is in agreement with the experimental results 

of Olsen and Shapiro who concluded that "non-linear effects due to large 

amplitude motion (in a rubber tube) a re  found to be not as large as those 

in similar problems in gas dynamics and water waves.'' 
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(c) The mathematical problem in the Lagrangian coordinate system 

(equation, (14) ) is identical to the first order perturbation problem of 

the Eulerian system (presented by Olsen and Shapiro). That is ,  the 

two problems have identical equations and coefficients.* This can be 

rationalized on the basis that the Lagrangian and Eulerian equations 

must be the same for small displacements. Since (for the case 

considered here) the Lagrangian form is linear for large amplitudes, 

it follows that the linearized Eulerian form must be the same as the 

general Lagrangian form. 

The Lagrangian form of the equation of motion has an easily obtainable 

closed form solution. This formulation is especially suited to the study of 

standing waves. In contrast, the characteristics method of solution to 

the Eulerian formulation requires the solution of an initial value 

problem although the steady state solution is desired. 

* The problem for the first order perturbation (vi)  in Eulerian coordinates for 

the velocity v is 

In this equation v(x,t) is the velocity at x at time t. 
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(e) Steady State Solution for Standing Waves 

The wall shear force term is based on steady state sinusoidal flow and i s  

valid only for that condition. The solution for standing waves is a tube plugged 

at one end, x=L, (no mean flow) and with prescribed sinusoidal displacement* of 

the fluid at the other end, x=O, requires the boundary conditions 

u(L,t) = 0 (18) 

u(0,t) = i ioe iUt  (19) 

* This boundary condition differs from that of the Olsen-Shapiro experiments in 

that they prescribed the flow at x=O to be sinusoidal, i.e. 

Qleiwt at x = 0 
Bu 
at 

A -  

This points out the difficulty of satisfying boundary conditions with the Lagrangian 

formulation. It is  feasible, however to change the experimental apparatus to 

concur with the boundary condition (19). O r  since the area of the tube near the 

inlet experienced only small changes in the Olsen-Shapiro experiments, the 

exact boundary condition can be approximated very accurately by 

or 

- all (0,t) = ‘1 - eiwt 
at Ae 

which is equivalent to boundary condition (18) with 
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The steady-state (standing wave) solution of equation (14) with boundary 

conditions (18) and (19) has the form 

(20) u(x,t) = uo(x)eiwt 

Substitution of u(x,t) from equation (20) into equation (14) and retention of the 

function u (x) which satisfies the boundary conditions leads to the steady-state 

solution 

where 

a 

b 

J(x) = sin ~ R ( L  - x) cosh y1(L - x) 

g(x) = cos ~ R ( L  - x) sinh y1(L - x) 

= sin yRL cosh yIL 

= cos yRL sinh yIL 

and 

If the boundary condition (equation (19 ) )  is taken as the imaginary part of 

Go eiwt, that is, 

then 
- 
uo {[a 4 (x) + b g(x) sin wt + [ b J (x) - a 1 U(X,t) = 

a2 + b2 
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CONCLUDING REMARKS 

The pressure area relation fo r  a rubber tube leads to a linear equation of 

motion when the Lagrangian coordinates a r e  used. The equation remains linear 

when an approximation for laminar flow wall shear stress is introduced into the 

analysis. 

This unique feature of a rubber tube with circular cross section is fortunate 

from the mathematical standpoint, or if one is interested in determining the 

wave distortion due only to viscous effects. This feature is unfortunate if one 

is interested in studying the wave distortion due to the non-linearities of the 

pressure area relation. 

An alternative to resorting to other materials in the study of wave distortion 

is to use partially collapsed (noncircular cross section) rubber tubes. 

The conclusions of Olsen and Shapiro regarding the nonlinear effects of 

large amplitude motion in elastic tubes should be restricted to those elastic 

tubes which have the same pressure area relation as a rubber tube of circular 

cross section. 
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Figure 1 . -  Coordinate system for Lagrangian equation development. 
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